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The transition metal-catalyzed addition of a carbonyl group to Scheme 1
an olefin is a transformation of considerable importance that has Me 25 mol%) e Me
been applied to the synthesis of both complex organic mole€cules €O (1 atm) N PtCl, N
and commodity chemicafsindustrial processes, most notably, % Suct (8 equiv) / (2 mol%) /
olefin hydroformylation, typically involve the addition of a 25 o"éfg,"min 92%
hydrogen atom and a carbonyl group across tseC®ond of the 3 83% 4 HyC
olefin23 However, the catalytic addition of a carbon or heteroatom COzMe
nucleophile and a carbonyl group across tke@bond of an olefin Scheme 2

represents a more desirable transformation for the synthesis of
complex organic molecules. Indeed, effective palladium-catalyzed

. . o H 2 1%
protocols for the alkoxylation/carboalkoxylattband amination/ N Ro,ﬁ;g‘;q,}iv, / 83% (R = Me)
carboalkoxylatioh of unactivated olefins have been developed and / CuCl, (3 equiv) 2% (R = oty
applied to the synthesis of functionalized heterocycles. In contrast, CO (1 atm) 74% (R = i-Pr)

THF
25 °C, 30 min

73% (R = Cy)

the catalytic addition of a carbon nucleophile and a carbonyl group
across the &C bond of an olefin has not been realiZd-Here
we report the palladium-catalyzed cyclization/carboalkoxylation of
alkenyl indoles, which represents the first effective protocol for Scheme 3
the catalytic addition of a carbon nucleophile and a carbonyl group H me H o e
across the €&C bond of an olefin. N Me ._ ) Me
We have recently reported the platinum(ll)-catalyzed cyclization /
of 2-alkenyl indoles to form tetrahydrocarbazoles and related Et.__~
derivatives (Scheme $)Although Pt(ll) complexes catalyze the
. . . . CI Cl
carbonylation of vinyl arenesall our efforts to realize the platinum- /\pu:
catalyzed cyclization/carbonylation of 2-alkenyl indoles have been ol
unsuccessful. Because Pd(Il) alkyl complexes are reactive toward °“°'ﬁL
CO insertiod7 and because Pd(ll) complexes catalyze the oxidative Cuct,
cyclization of alkenyl indole$%* we considered that Pd(Il)
complexes might catalyze the cyclization/carbonylation of 2-alkenyl
indoles. Indeed, in an optimized procedt#treatment of 1-methyl-
2-(4-pentenyl)indolel) with a catalytic amount of PAgICH;CN), s
(2) (5 mol %) and a stoichiometric amount of Cu@38 equiv) in A of COMe
methanol under CO (1 atm) at room temperature for 30 min led to
the isolation of tetrahydrocarbazofin 83% yield as a single g stoichiometric amount of Cugin THF that contained methanol
regioisomer (Scheme 1). (10 equiv) led to the isolation of the corresponding tetrahydrocar-
Unprotected, electron-rich, and electron-poor 2-(4-pentenyl)- bazole in 83% yield (Scheme % By employing this procedure,
indoles underwent efficient palladium-catalyzed cyclization/ efficient palladium-catalyzed cyclization/carboalkoxylation of 2-(4-
carboalkoxylation (Table 1, entries—B). Palladium-catalyzed  pentenyl)indole with ethanoh-octanol, 2-propanol, and cyclohex-
cyclization/carboalkoxylation of 2-(4-alkenyl)indoles tolerated sub- anol was achieved (Scheme 2).
stitution along the alkenyl chain and at the internal and cis-terminal  Because the migratory insertion of CO into ar-K1 bond occurs
olefinic positions (Table 1, entries®). 2-(3-Alkenyl)indoles also  with retention of stereochemistry at the metal-bound carbon &tom,
underwent efficient, regioselective, and, in the case of 2-(3-alkenyl)- the stereospecific cyclization oE)- and @)-2-(3-hexenyl)indole
indoles that possessed terminal olefinic substitution, highly ste- (Table 1, entries 11 and 12) established the anti addition of the
reospecific palladium-catalyzed cyclization/carboalkoxylation (Table indole and palladium across the=C bond of the olefin. This
1, entries 16-12). In addition to 2-(4-alkenyl)- and 2-(3-alkenyl)-  stereochemical outcome directly implicates a mechanism for
indoles, 2-(5-hexenyl)-, 3-(3-butenyl)-, and 3-(4-pentenyl)indoles palladium-catalyzed cyclization/carboalkoxylation involving attack
also underwent palladium-catalyzed cyclization/carboalkoxylation of the indole on the palladium-complexed olefinlbf(Scheme 3);
to form the corresponding tricyclic indole derivatives in moderate subsequent loss of HCI would form the palladium alkyl intermediate
to good yield with excellent regioselectivity (Table 1, entries-13  IIl . a-Migratory insertion of CO into the PdC bond oflll would
15). form the palladium acyl compleXV, which could undergo
Effective palladium-catalyzed cyclization/carboalkoxylation of methanolysis to release the tetrahydrocarbazole and form a pal-
alkenyl indoles did not require methanol as solvent. For example, ladium(0) complex. Oxidation of Pd(0) with Cu(ll) would then
treatment of 2-(4-pentenyl)indole with a catalytic amoung afnd regenerate the Pd(ll) carbonyl comple¢gScheme 3}* The 6ende
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Table 1. Cyclization/Carboalkoxylation %f Alkenyl Indoles trig cyclization of 1-methyl-3-(3-butenyl)indole (Table 1, entry 14)
Catalyzed by PdCI(CH;CN), (2) (5 mol %) in the Presence of suggests that an analogous outer-sphere pathway is operative for
CuCl (3 equiv) in Methanol at Room Temperature L .
- - the Pd(ll)-catalyzed cyclization/carboalkoxylation of 3-alkenyl
entry alkenyl indole product time (h) yield (%)? . 15
. — indoles!?
N N In summary, we have developed a mild and effective Pd(ll)-
Y, / catalyzed protocol for the cyclization/carboalkoxylation of alkenyl
R' R! indoles. These transformations represent both the first examples
Me0,C of the catalytic addition of a carbon nucleophile and a carbonyl
1 n::u, R2=2H 05 83 group across the €C bond of an olefin and an efficient and
2 RIOMeR TVe o3 % selective route to the synthesis of functionalized polycyclic indole

derivatives from simple precursors.
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N N Supporting Information Available: Experimental procedures and

/ / spectroscopic data for products . This material is available free of charge
7 25 87 via the Internet at http:/pubs.acs.org.
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